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Abstract

Back-propagation (BP) is undoubtedly the preferred method for training deep
neural networks. While this method has proven its effectiveness in a myriad
of different environments and architectures, it has some well-known drawbacks
spanning from its sequential nature. Moreover, this algorithm is arguably far
from being biologically plausible, which makes it a bad component in any accurate
model of the brain. Alternatives like Feedback Alignment (FA) and Direct Feedback
Alignment (DFA) have been recently proposed as possible methods that are more
biologically plausible than BP while also correcting some of the know drawbacks of
this algorithm. In this paper, we explore applications of DFA by looking at variants
of the algorithm that could lead to improvements in both training convergence times
and testing-time accuracy. We present two main variants: Feedback Propagation
(FP) and Blocked Direct Feedback Alignment (BDFA). These variants attempt
to strive a balance between DFA and BP by leveraging DFA’s efficient gradient
computation and BP’s accurate gradient computation. In our experiments we
manage to empirically show that BDFA outperforms both DFA and BP in terms
of convergence time and testing performance when used to train very deep neural
networks with fully connected layers on both MNIST and notMNIST. We end our
work by proposing further directions for future work in this area.

1 Motivation

Back-propagation (BP) [1, 2] has become the default algorithm used for training Deep Neural
Networks (DNNs). While this algorithm has proven to work exceptionally well in computing exact
gradients in a diverse set of network architectures, its unstable behavior when dealing with very
deep models [3] has forced the research community to constraint themselves to certain type of
architectures or tricks when training deep models (e.g., long-term connectivity patterns [4]). This
has imposed an invisible cap to our ability to explore the space of model architectures that can be
efficiently trained. Given that DNNs have been shown to perform outstandingly well in tasks from
image recognition [5, 4, 6, 7] to language translation [8, 9], the idea of developing architectures
independently of the training method used is certainty very promising. Not only would this allow us
to explore different families of models, but also possibly develop approximate methods for gradient
computation which could lead to faster and more biologically plausible training algorithms. It is with
this note in mind that we explore non-exact learning algorithms as part of the work presented in this
paper.

We will present our findings as follows: first, we will introduce some notation and background
concepts on which we will build the methods we discuss throughout the paper. Second, we will give
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some motivation behind the importance of exploring alternative approaches for error propagation.
We will then follow by describing and developing some of the ideas we based our work on and
discuss their advantages and disadvantages. Following the background, we introduce an extensive
experimentation section where we describe the experiments we performed to test our proposed
algorithms and include a brief discussion of the results obtained. We finally end our paper with a
short discussion on possible work that could be worth exploring in the future.

2 Background

2.1 Fully Connected Neural Networks

Fully connected neural networks are a type of neural network that attempts to closely learn a mapping
between datapoints and their corresponding labels using a set of known mappings (see [10] for a very
detailed description of these models). Formally speaking, a fully connected neural network attempts
to learn a mapping Φ : X → L between a set of datapoints X = {x1, x2, ...} (possibly infinite) and a
set of labels L = {l1, l2, ...} (also possibly infinite in regression case) where we would like Φ(·) to
map xi to li as closely as possible, as defined by some similarity metric between the labels. For our
work, we focus on the case when we are trying to classify some datapoints into a set of C classes
{c1, c2, ..., cC} so every label is a one-hot-encoding of one of these classes. This simply means that
if datapoint xi is classified as class cj then li is a vector of dimension C where every entry is zero
except for the j-th which is set to 1.

In order for a neural network to learn such a mapping, the model is provided a set of n correct
mappings {(x1, l1), (x2, l2), ..., (xn, ln)}, called the training set, that serve as a basis for the model
to understand how would such a mapping Φ(·) look like.

Specifically, a fully connected neural network with n layers has some weight matricesW1,W2, ...,Wn

and some bias-terms b1, b2, ..., bn. We think of each layer i of the network as a vector of inputs that
somehow gets mapped to the following layer using a combination of the weight matrix Wi and bias bi
of this layer. Given an input datapoint x, the output ŷ of the function Φ(x) modeled by this network
is computed as follows: we first define h0

def
= x. For each layer in {1, 2, ..., n− 1} we compute the

activation of layer i, refereed to as ai, given by the following expression

ai
def
= Wihi−1 + bi

This variable is refereed to as the activation of layer i. We then "pass" this activation through a
non-linearity (i.e., any non linear function) f(·) to get the final output of layer i, and hence the input
of the next layer (i+ 1), defined by the variable hi given by

hi
def
= f(ai)

Common non-linearities used are the sigmoid function, tanh, and today more commonly the ReLU
activation function [11]. Now we make things a little different for the last layer (layer n) where we
define ay to be the activation of this layer as

ay = Wnhn−1 + bn

However we require this activation vector to have a dimension of C. With this activation vector, we
compute the output hy of this layer using use a "softmax function" that turns all the values in ay into
probabilities that indicate how likely the given input is from being one class over another. Formally
speaking, we calculate this probability vector hy (where the ith input of hy is the probability that the
given input is classified as class ci) as follows:[

hy
]
i

def
=

exp
([
ay
]
i

)∑
j exp

(∑
j

[
ay
]
j

)
Where we use

[
x
]
i

to indicate the ith entry in vector x. Given this probability distribution, the
network will output the class whose corresponding entry in hy is the highest. In other words, if the
output of the network is ŷ (i.e., the value of Φ(x)), then this value is given by

ŷ
def
= c

argmaxi

[
hy

]
i
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Intuitively, we can think of every layer in the network as some sort of specialized filter that extracts
crucial information from the data passed from the previous layer that could be of importance for
the correct classification of the given datapoint. Because every layer in this model feeds its output
to the subsequent layer, these models are referred to as feed-forward networks. Furthermore, the
computation of the activations of the output layer given an input is usually refereed to as the forward
pass.

The last element we need to completely define a fully connected neural network is some sort of
metric that can tell us how good this the function we generate with this model is compared to what
we know from the data. For this we use something referred to as a loss function L(·) that takes the
output label of a given example x and the correct label of this datapoint and returns a real number
whose magnitude tells us how bad our solution is. Ideally low values are very good (i.e., the model
is correctly classifying a lot of points) while high values correspond to bad models. When using
softmax, a commonly used loss function if what is referred to as "cross-entropy". For more on this
topic, please refer to [10].

2.2 Back-propagation

Now that we have defined the model used for fully connected neural nets, we turn our attention
to how we could possibly learn the parameters of our model (the weights and the biases) to get
an good approximation of the real mapping between the datapoints and the labels. Here is where
back-propagation comes in play.

Back-propagation (BP) is a learning algorithm firstly introduced in the early 70’s, yet not quite popular
until the late 80’s [1, 2], where the each layer in a feed-forward neural network receives some "blame"
(i.e., how much they affected the resulting loss) through a signal that is continuously passed from the
last layer of the network to the first layer of the network. Generally, this algorithm is used to train
networks in a fully supervised scenario as defined above. The algorithm, as complicated as it may look
later, is simply a continuous application of the chain rule to compute the gradient of the loss with re-
spect to the different weights and then use this value to do a gradient descent update on the parameters.

Informally all layers are assigned some sort of "blame" (i.e., gradient of the loss with respect to their
weights) so that the layer can upgrade its parameters by "shifting" them by an amount proportional to
the blame assigned to this neuron. The shift is performed in the direction opposite to that of the
highest possible future blame as it is commonly done in gradient descent. Intuitively, all weights are
being updated in order to locally minimize the error they just saw given the training example just used.

Formally speaking, if h0
def
= x is a training example with true label y (in a one-hot encoding) we first

compute a forward pass for this given input to get an output ŷ. Once this is done, we save all the
activations of all layers and compute the loss L given the true label y and the returned label ŷ. The
crucial step in back-propagation comes from the computation of "feedback vectors" (sometimes also
referred to as "delta" activations) that can be directly used to compute the gradients of the loss with
respect to each weight matrix. These vectors are computed starting from the output layer moving
toward the input layer by propagating the feedback vector of a layer to the previous layer. This is the
reason why the name of this algorithm is back-propagation and this update step is usually called the
backwards pass.

More specifically, we proceed as follows: we first let e be the output gradient defined as

e
def
= δay =

∂L
∂ay

(1)

This function can be computed directly from the nature of the loss function and requires that the
provided loss function is differentiable. We proceed by propagating this feedback vector all the way
to the first layer by computing the gradient at each layer i ∈ {1, 2, ..., n− 1} as follows:
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δai

def
=
∂L
∂ai

(
WT

i+1δi+1

)
�
(
f ′(ai)

)
(2)

Where� represents entry-wise multiplication between vectors, f ′(·) is the derivative of the activation
function, and, for simplicity of notation, we let δan+1

be equal to δay
. With these gradients we can

compute the gradient of the loss with respect to the weights through a simple chain rule as follows:

∂L
∂Wi

=
( ∂L
∂ai

)( ∂ai
∂Wi

)
= δaih

T
i−1

Similarly we can compute the gradient of the loss with respect to the bias of layer i as:

∂L
∂bi

=
( ∂L
∂ai

)(∂ai
∂bi

)
= δai

A graphical representation of both the forward and backward pass can be seen in figure 1.

Figure 1: Diagram of how back-propagation works in a network with 5 hidden layers. Layers are the
vertical columns where the i-th vertical column represents the (i− 1)-th layer. The first column is the
input and the last column is the output (the n-th layer). The dashed line represents the forward pass
and the solid line represents the backwards pass. On top of every line (in red color for the back-pass
and blue for the forward pass) we indicate what parameters are required for the pass to be executed.
Note how on the backwards pass we always need to propagate the deltas and the transpose of the
weight matrix to the previous layer. This can be understood by looking at equation (2)

.

With this in mind we can then update the weights and biases of any given layer in the direction
opposite to the computed gradient for those weights using some sort of multiplying factor λ (refereed
to as the learning rate) that modulates how big of an update we would like to take. Note then how we
are propagating these "deltas" from one layer to the previous one so that every layer can, at the end
of this process, compute their respective gradients and update their weights accordingly. Once we
have updated all the parameters accordingly, we repeat this process for the next batch input in our
training set (or batch of inputs if we are using mini-batches) to further improve the performance of
our network.

2.3 Drawbacks of Back-propagation

While back-propagation has been shown to work amazingly well for even complex architectures with
all sorts of complex architectures ranging from convolutional networks [5] to recurrent networks
[12], there are a few important drawbacks of this algorithm that are worth knowing and mentioning.

The first drawback we will discuss is something that is usually referred to as the "vanishing
gradient" problem in the literature [13, 3]. Note that because back-propagation is a simply a
sequential use of the chain rule in order to compute the gradients of all layers, it can be the case
that the gradients are not big enough and hence this constant multiplication of small terms can
lead to a gradient that becomes meaningless for the first layers of the network. This means that
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the later layers will be updated greatly while the first few layers will be barely updated due to
the fact that when the gradient reaches those layers, it is already too small. This effect gets only
worse as the depth of the network increases. This is a very important issue as we have seen
empirically that the more layers we can add to a network the more expressive our model becomes [10].

While several solutions have been proposed to circumvent this problem (see [6], [14], [4] for
some quintessential examples of such approaches), these architectures are only a consequence of
an inherent limitation of the training algorithm used. While this does work in practice, it is still
cumbersome that we tend to find solutions around this problem instead of tackling the problem
directly by finding a training algorithm that does not have this issue. This, as we will see later, will be
one of the inspirations for Direct Feedback Alignment (DFA).

Another problem with back-propagation is its inherent intractability: back-propagation cannot be
fully parallelized in practice as it require all feedback vectors to be propagated sequentially. While
it is true that it can be parallelized at a batch level as mentioned in [15], it still has significant
scalability issues when dealing with very deep models and it adds an extra hyper-parameter to our
model. Although training times can be alleviated in practice with the use of specialized hardware like
GPUs and TPUs seem, it would be ideal if we could find some sort of algorithm that can be fully
parallelized allowing us to train very deep networks in multiple machines at the same time. This
drawback is one of the main motivations for our proposed learning algorithms described later on this
paper.

A final problem we want to address with back-propagation is its biological implausibility. While it is
well known that feed-forward neural networks are far from being an accurate model of the brain [16],
it could still be viewed as a primitive attempt to reach a model that in fact resembles the way we
learn in a more accurate matter. A significant issue with trying achieve this is that back-propagation
has a lot of features that are hard to justify in any biologically plausible model [16]. In this paper
we will focus on tackling two of these implausibilities: (1) back-propagation seems to assume that
neurons from one layer to another are capable of coordinate the computation of the transpose of the
weights of the following layer during training. This means that not only neurons are fully aware
of the axon’s weights used by the neurons in the following layer but neurons in one layer can also
choreographically find a symmetric matrix to the weights of the following layer. As discussed in [16],
this is believed to be far from possible.

The second big implausibility is the fact that (2) back-propagation assumes that the feedback path,
the information path used to update the weights, is exactly the same as the forward pass. This implies
that connection between neurons are reciprocal (i.e., information can flow both ways) which, even
though some reciprocal connections have been observed in neurons, is highly unlikely to be the
case [16]. This means that an accurate model of the brain should not always assume reciprocal
connections between layers as back-propagation does.

3 Previous Work and New Ideas

In this section we will go over some previous work that has been made as an attempt to solve the
biological implausibilities that were mentioned in the previous sections, and introduce some novel
variations of Direct Feedback Alignment.

3.1 Feedback Alignment

Feedback Alignment (FA) was first suggested as a modification of the BP algorithm that does not
require symmetric weights in order to train a fully connected neural network. In order to achieve this,
this model assumes that every layer i has both a feed-forward matrix Wi as in the normal case, but
now we have a fixed "backwards" matrix Bi that is used during training instead of the transpose of
the weight matrix of the following layer. This matrix is a random matrix (usually a sampled from
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a uniform distribution in [0, 1]) and is never updated at any time during training or testing. This
matrix is uniquely used during training as a substitute of the transpose of the following layer’s weight
matrix.

Formally, FA proceeds very similarly to BP but now we compute the feedback vectors (deltas) as
follows: for the last layer the delta is still the same as in BP:

e
def
= δay

=
∂L
∂ay

(3)

Now, for every hidden layer i ∈ {1, 2, ..., n− 1}, the feedback vector δai
is computed as follows:

δai

def
=
∂L
∂ai

(
Biδi+1

)
�
(
f ′(ai)

)
(4)

A graphical representation of this method can be seen in figure 2.

Lillicrap et. al. managed to show that this method in fact works surprisingly well when training a fully
connected neural network [16]. In their experiments, FA converged faster than BP while achieving
very similar testing errors. Furthermore, by looking at the weights learned by FA during training, they
show that, as the number of training steps increase, the weights Wi will start to align to the transpose
of the weights Bi+1. This means that after some training steps, this algorithm will "learn to learn" as
back-propagation does. This surprising result shows that there is clearly some unnecessary things in
BP that we can and should get rid of in order to explore potentially better learning algorithms.

Figure 2: Diagram of how Feedback Alignment (FA) works in a network with 5 hidden layers. The
notation used in this figure is the same one as in figure 1. Note how, differently from figure 1, we are
not required to pass the transpose of the weight matrix during the backwards pass.

3.2 Direct Feedback Alignment

Direct Feedback Alignment (DFA) was proposed by Nokland in [17], and presents a variant of
Feedback Alignment where each layer in the network only depends on the error in the last layer -
namely the update step for each layer is computed using the layer’s own activation function derivative
and the "delta" from the last layer. The intuition behind this idea is that this model does not assume
that feedback connections are not the same as forward connection (i.e., connections are not reciprocal).
This is extremely counter-intuitive as it means that the update of the layer’s weight matrix not only
does not depend on the matrix itself, but also does not depend on the "effect" of the layer on the next
layer, but rather only on the effect of the last layer on the output. However, as shown in experiments
in [17] as well as our own experiments, DFA quickly and efficiently converges to minimize loss in a
simple fully connected network.

Formally, DFA computes the feedback vectors (deltas) as follows: for the last layer the delta is still
the same as in BP

e
def
= δay

=
∂L
∂ay

(5)
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Now, for every hidden layer i ∈ {1, 2, ..., n− 1}, the feedback vector δai is computed as follows:

δai

def
=
∂L
∂ai

(
Bie
)
�
(
f ′(ai)

)
(6)

As we can see in here, the update rule only depends on the delta of the last layer and the feedback
matrix as used in FA. The amazing thing about this idea is that it can be easily parallelized: once
computed e, you can update all the labels in parallel in one step! This makes this training method
significantly faster than BP and FA. A graphical representation of this method can be seen in figure 3.

Figure 3: Diagram of how Direct Feedback Alignment (DFA) works in a network with 5 hidden
layers. The notation used in this figure is the same one as in figure 1. Note how the error gradient is
now being propagated only from the last layer to all layers and all layers use a random matrix as in
FA.

4 Feedback Propagation

Given the success of DFA, a clear next step is to experiment with combinations of DFA and BP.
The inspiration for such an experiment is that it may be beneficial to introduce DFA only after the
"vanishing gradient" starts becoming a problem, or possibly minimize the use of BP in order to
increase performance, but still try and optimize accuracy using a few layers of BP. Nokland’s results
showed that there were some cases where DFA converges well but not to the same testing accuracy as
BP (we did could not replicate the same issue).

Hence for we introduce Feedback Propagation (FP) as an alternative algorithm where the last k layers
of the network (we will call this number k the BP depth parameter) are trained using BP and then
remaining (n− k) layers are trained using DFA with the last delta computed in the BP stage of this
algorithm. This would will make the overall algorithm less parellizable as the update of the last k
layers cannot be parallelized. Nevertheless, the rest can in fact be parallelized and thus this algorithm
is faster than BP.

A description of this algorithm can be seen in figure 4.

5 Blocked Direct Propagation

Another possible approach is to allow some of the gradient to pass through the network during
training, with the hypothesis that this may further speed up the training process and possibly allow a
higher final accuracy. Intuitively, there is really no reason to assume that all connections are not
reciprocal as DFA does. In fact, it has been show that biologically speaking reciprocal connections
are possible [16]. Hence allowing the existence of reciprocal connections could in fact improve the
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Figure 4: Diagram of how Feedback Propagation (FB) works in a network with 5 hidden layers. The
notation used in this figure is the same one as in figure 1. In this example we use a BP depth of 3
layers (the last three layers are updated using normal BP).

performance of the network while sacrificing some parallelization.

We formally implemented this idea using "blocks" of direct feedback aligned layers, but with a
gradient being passed through between these blocks. In other words, each subsequent block of
DFA trained layers takes its "delta" from the last layer of the proceeding DFA block. We call this
method Blocked Direct Feedback Alignment (BDFA). We do this with the hope that adding blocks
will impose a slight penalty in training, but may improve convergence performance or final testing
accuracy.

A description of this algorithm can be seen in figure 5.

Figure 5: Diagram of how Blocked Direct Feedback Propagation (BDFB) works in a network with 5
hidden layers. The notation used in this figure is the same one as in figure 1. In this example our
block size is equal to 3.

6 Experimentation

6.1 Setup

In order to test the various architectures for training proposed above, sample networks were trained
on two datasets:

• MNIST
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MNIST is an industry standard dataset used for evaluating machine learning performance
on a series of hand-drawn digits. Originally created by LeCun [18], it is often used as a toy
dataset for evaluating and setting baselines for new architectures and training methods in
Deep Learning.

• notMNIST
notMNIST is a recently created dataset evaluating performance on the recognition of the
letters A-J of the alphabet, in varying fonts and stylized in different ways. Arguably it is
a harder task than MNIST as the characters themselves vary widely in terms of style (see
Figure 6).

Figure 6: Sample images from notMNIST dataset.

The training code itself was implemented in Python via the TensorFlow framework [19], based on
an iPython notebook by SangHyun Lee. We used this code as a base for our code, however our end
product end up diverging quite a bit from this original repository. The experiments were run on a
variety of depths and hidden-layer sizes, specified below for each experiment.

6.2 Quantitative Results

6.2.1 Verification of DFA Implementation

We started our experimentation by implementing the methods discussed in [17] and [16] to make
sure we were capable of recreating the papers’ original results before proceeding to trying our own
variations. Initial experiments performed confirm the results of Nokland [17] - with Direct Feedback
Alignment achieving comparable or better performance in the tests run. Initial tests on MNIST and
notMNIST performed with just 15 layers were able to reproduce the results reported in [17].

An experiment highlighting the nature of DFA as being a solution to the Vanishing Gradient problem
is a fully connected network trained on MNIST with 100 layers and 200 hidden units. The extremely
deep nature of this architecture makes back-propagation impossible to converge, but DFA has no
issue training this network as can be seen in Figure 8.

6.2.2 Feedback Propagation in 15 Layers

In order to test the concept of mixing back-propagation for the later layers with Direct Feedback
Alignment for the earlier layers, we run some experiments using FP while varying the BP depth
parameter of this network. These experiments consisted of training a fully connected network with
720 hidden units and 15 layers. The last layers were trained using normal back-propagation, while
the remaining first layers are trained using DFA with the delta term from the last back-propagation
layer. The number of back-propagation layers was varied from five to zero (equivalent to DFA on
the whole neural network). The results can be seen in Figure 7, showing that the fastest training
procedure to converge was pure DFA, with each additional layer of back-propagation causing the
convergence to slow down. The final testing accuracy after 10,000 steps was consistent among all six
experiments - 94.6%.

Surprisingly we were not able to obtain an improvement by increasing the number of layers using
BP in our network. This may suggest that in fact the feedback received from the last layer (whose
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Figure 7: Accuracy results during training of mixed DFA layers followed by various lengths of
back-propagation layers.

delta is the one that really tells us how we performed) is the best one to update subsequent layers.
Intuitively this could make sense if we think of this feedback as the least "corrupted" feedback we
can provide to previous layers. Furthermore, doing some back-propagation may damage the quality
of the gradient used for the DFA part of the network as a cause of the vanishing gradient problem.
Some future experiments to confirm whether this is true could consist on doing the same thing as
above but now the DFA part of the network receives the feedback directly from the error in last layer
of the network instead of from the last layer where we performed BP.

6.2.3 Blocked DFA

During experimentation we realized that while normal DFA succeeds in training extremely deep
networks, the Blocked DFA could help achieve a higher accuracy across all these layers while still
maintaining high speed training and avoiding the vanishing gradient problem. Two experiments were
run, each with 100 layers, and one with 200 hidden units and the second with 300 hidden units. The
block sizes tested were 100 (pure DFA), 50 and 25. Smaller blocks achieved higher testing accuracy
(Table 1,2) and much faster convergence as can be seen in Figure 8 and Figure 9, for 200 and 300
hidden units respectively. However, smaller block sizes had issues with convergence, the reason for
which presents an interesting future area to explore.

Block Size Testing Accuracy

100 (DFA) 89.2%
50 90.8%
25 93.2%

Table 1: Testing accuracy for 200 hidden units and 100 layers.

Block Size Testing Accuracy

100 (DFA) 89.0%
50 90.0%
25 93.1%

Table 2: Testing accuracy for 300 hidden units and 100 layers.

These results may suggest that distributing feedback into blocks can in fact bring significant improve-
ments to the network training. Note that this may somehow corroborate our claim made above that
corrupting a gradient with BP may be a bad idea for feedback passing to other layers. The reason
why this blocked version out performs DFA, however, is not quite clear for us and we would certainty
be interested in running further experiments that could make the reason behind this phenomena more
clear for us.

7 Future Work

In this section we will mention some interesting directions we can take in the future for further
explore the variants presented in this paper and maybe discover better training algorithms at the end.
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Figure 8: Accuracy results during training of various block sizes for Blocked DFA on a 100-layer
fully connected network with 200 hidden units in each layer, also displaying vanishing-gradient issue
with back-propagation.

Figure 9: Accuracy results during training of various block sizes for Blocked DFA on a 100-layer
fully connected network with 300 hidden units in each layer.

1. Explore if knowing the derivative of the non-linearity is necessary: can we learn without
knowledge of its derivative?
The discovery of the viability of DFA was a major surprise as it lacks a mathematical
foundation for the fact that it works. It may be interesting to explore what other unexpected
"modifications" could be made with the motivation of making neural networks more
biologically plausible. For instance - could one avoid knowing the derivative of the
activation function during the update step? This would certainty be a more biologically
plausible model for the brain, as it would further limit any "processing" a neuron would
have to do and would not assume neurons know the derivative of their activation function.

2. Extend experiments to various other architectures and methods currently in use in the state
of the art, such as LSTMs and convolutions.
Despite the promising results from DFA as well as Blocked DFA, all experiments thus
far using DFA have been run on relatively very simple neural networks - fully connected
networks with standard activation functions. It is an open question whether DFA or FA
work on more complex architectures such as convolutions, where the update steps end up
being far more complicated than a standard back-propagation step in a fully connected
network. Nøkland claimed he tried DFA out on convolutional networks, yet not a lot of
experimentation was shown or done.

3. Develop a mathematical foundation for DFA.
DFA and other derivatives of the concept will never be properly understood or accepted
without formal justification for their performance. A key step in getting DFA accepted into
the machine learning world is to provide justification for why it works as well as information
on which conditions are required for it to work. Some early mathematical analysis has been
done, but only for extremely simple networks of one or two layers (see [17]).
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4. Explore the use of DFA as a regularizer during training.
An interesting experiment to perform would be switching between back-propagation and
DFA during training of datasets to explore the impact on the convergence. This could be
done non-deterministically across layers and or entire training steps. We already know the
"path" taken by DFA to the final state is different from back-propagation - what would
allowing the training step to switch between these methods end up causing for the training
process?

8 Conclusions

The main conclusions we got by working on this project this semester can be summarized in the
following few key points:

• Direct Feedback Alignment does work and converges on fully connected neural networks to
promising results.

• In the limited experiments performed, it became clear that DFA, FA, FP, and BDFA converge
far quicker than back-propagation, both in terms of more quickly decreasing in loss, but also
making each update step occur in constant time instead of a function of the depth of the
network. This allows us to use these methods to train very deep networks without issues
(i.e., avoiding vanishing gradient and performance issues).
• Getting feedback from multiple inner layers can be beneficial for learning better represen-

tations at the cost of some training-time slowdown. This is true as long as the feedback
used in all blocks is not "corrupted" through BP update steps (i.e., multiplications of several
gradients from the chain rule).

• Feedback propagation seems to work equally as well as normal DFA. This could be caused
by the fact that propagating gradients one or more layers can be enough for the feedback to
be useless to update further layers in the correct direction.
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