Universiteé f'”‘\

de Montreéal

Addressing Concept Mislabeling in Concept Bottleneck Models Through Preference Optimization
Emiliano Penaloza =

HEC MONTREAL Mila

L aurent Charlin* t3
SHEC Montreal

Tianyue H. Zhang ** Mateo Espinosa Zarlenga* 4

“Université de Montreal “University of Cambridge

Paper in 30 Seconds Concept Preference Optimization Non-Noisy Performance

Base Perfomence

Rather than assuming concept label correctness, we assume preference over concept labels—this simple 1Training Images ]_\
shift enhances concept accuracy, task performance, and intervention effectiveness in Concept Bottleneck '
Models under noisy and clean concept labels.
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We find that even when there is no noise models Lcpo is able to outperform models trained with Lgce.

Interestingly base CBMS trained with Lcpo are able to match/outperform more parametrized models such
as Concept Embedding Models (CEMs).
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Concept Bottleneck Models

Triangle

Concept Bottleneck Models (CBMs) are interpretable deep learning architectures that constrain model
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Noisy Concepts

Image datasets are known to be prone to be specifically prone to labeling noise. While not a huge problem
for traditional models, this is drastically exacerbated in CBMs where there are potentially hundreds of labels
per data sample making this a huge problem for these types of models in reality.

Correct Label

Preferred
Label

Incorrect Label

) . VoLpcE|
p Empirical Zc cf Orange Beak, -Grey Beak 1 \ur (C‘ZE)
L Dataset ) White Throat, -Hooked Beak

L Samplingg HLCPO}
60
Preferred : V

Policy ) ZcE{Orange Beak, -Grey Beak } Vv 0 o (C‘ L ) J
\ J

CBMs rely on Binary Cross Entropy (BCE) for training which assumes label correctness—being an unrealistic
assumption for most CBM datasets—so we design Concept Preference Optimization (CPO), an online
algorithm inspired by Direct Preference Optimization that only assumes preference over concept pairs.
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But why should preferences be more robust to noise?

In short, we show that under label noise, the gradient of Lcpo closer approximates its optimal gradient
compared to Lgcg.
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Posterior Approximation

We show that since Lcpo optimizes
the maximum entropy RL objective, it
is equivalent to doing posterior infer-
ence over the concepts ¢, thus yield-
ing enhanced uncertainty estimates
at Nno cost.
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Interventions

We find that the uncertainty estimates yielded by Lcpo greatly aid in getting better performance when
intervening based on model uncertainty (variance of the concept prediction).
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