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Paper in 30 Seconds

Rather than assuming concept label correctness, we assume preference over concept labels—this simple

shift enhances concept accuracy, task performance, and intervention effectiveness in Concept Bottleneck

Models under noisy and clean concept labels.

Concept Bottleneck Models

Concept Bottleneck Models (CBMs) are interpretable deep learning architectures that constrain model

outputs using a concept loss on pre-defined concepts.

LCBM = LCE(y, gφ(c)) + λLBCE(c, πθ(c|x)).
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Noisy Concepts

Image datasets are known to be prone to be specifically prone to labeling noise. While not a huge problem

for traditional models, this is drastically exacerbated in CBMs where there are potentially hundreds of labels

per data sample making this a huge problem for these types of models in reality.
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CBMs rely on Binary Cross Entropy (BCE) for training which assumes label correctness—being an unrealistic

assumption for most CBM datasets—so we design Concept Preference Optimization (CPO), an online

algorithm inspired by Direct Preference Optimization that only assumes preference over concept pairs.

LCPO = −E(x,c)∼µ
c′∼πθ

[
log σ

(
log πθ(c|x)

π0(c|x)
− log πθ(c′|x)

π0(c′|x)

)]

But why should preferences be more robust to noise?

In short, we show that under label noise, the gradient of LCPO closer approximates its optimal gradient

compared to LBCE.

∥∥E(c∗,x)∼d[∇θLCPO] − E(c,x)∼µ[∇θLCPO]
∥∥

2 ≤
∥∥E(c∗,x)∼d[∇θLBCE] − E(c,x)∼µ[∇θLBCE]

∥∥
2

Posterior Approximation

We show that since LCPO optimizes

the maximum entropy RL objective, it

is equivalent to doing posterior infer-

ence over the concepts c, thus yield-
ing enhanced uncertainty estimates

at no cost.

Non-Noisy Performance

Base Perfomence

We find that even when there is no noise models LCPO is able to outperform models trained with LBCE.

Interestingly base CBMS trained with LCPO are able to match/outperform more parametrized models such

as Concept Embedding Models (CEMs).

CUB AwA2 CelebA

Task Accuracy Concept AUC Task Accuracy Concept AUC Task Accuracy Concept AUC

ProbCBM Sequential 0.742 ± 0.004 0.900± 0.007 0.891 ± 0.003 0.960 ± 0.003 0.302 ± 0.008 0.878 ± 0.006

CBM BCE 0.753 ± 0.009 0.937 ± 0.001 0.900 ± 0.008 0.959 ± 0.003 0.283 ± 0.007 0.873 ± 0.002

CBM CPO (Ours) 0.800 ± 0.003 0.952 ± 0.001 0.915 ± 0.004 0.971 ± 0.001 0.310 ± 0.009 0.857 ± 0.003

CEM BCE 0.800 ± 0.003 0.946 ± 0.001 0.889 ± 0.001 0.953 ± 0.000 0.351 ± 0.006 0.875 ± 0.004

CEM CPO (Ours) 0.807 ± 0.004 0.931 ± 0.003 0.917 ± 0.003 0.965 ± 0.001 0.352 ± 0.004 0.853 ± 0.003

Interventions

We find that the uncertainty estimates yielded by LCPO greatly aid in getting better performance when

intervening based on model uncertainty (variance of the concept prediction).
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Performance Under Noisy Concept Labels

We study noisy concepts by randomly flip-

ping the concepts labels with probability p ∈
{0.1, 0.2, 0.3, 0.4}. See the for more structured

noise where we noise according to related con-

cepts and uncertainty of the labeler.
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